Open Access

Oral presentation **Prediction of the scoliotic deformity correction in brace** D Chekryzhev*, A Mezentsev, D Petrenko and A Levytskyi

Address: Chekryzhev D.-"Orthospine" Kharkiv, Ukraine, Mezentsev A., Petrenko D. Sytenko Institute of Spine and Joint Pathology Kharkiv Ukraine Levytskyi A. National Medical Academy Kyiv Ukraine 80 Pushkinskaya street, 61024, Ukraine

Email: D Chekryzhev* - dmytry_o@rambler.ru

* Corresponding author

from 6th International Conference on Conservative Management of Spinal Deformities Lyon, France. 21-23 May 2009

Published: 14 December 2009 Scoliosis 2009, 4(Suppl 2):O12 doi:10.1186/1748-7161-4-S2-O12

This abstract is available from: http://www.scoliosisjournal.com/content/4/S2/O12

 $\ensuremath{\textcircled{}^{\circ}}$ 2009 Chekryzhev et al; licensee BioMed Central Ltd.

Background

Predicting the amount of scoliosis correction provided by a brace has been routinely done using radiographs. This method is not desirable, however because of the risk of malignancy due to repeated radiation exposure.

A diagnostic device called the "Spinal Mouse" has been widely used as a measurement tool in patients with scoliosis. This diagnostic method may also be useful for the prediction of scoliosis correction in a brace.

Objective

To study the correlation between spinal position measured with the "Spinal Mouse" and spinal position measured radiographically in the brace.

Materials and methods

Forth three scoliosis patients (12 males, 31 females) were enrolled in this study. Mean age was 10.3 years (range 6-15). Mean Radiographic Cobb angle before treatment was 37.2°. All the patients were investigated before bracing with "Spinal Mouse" in convex side bending position. After three months of bracing we assessed the radiographic Cobb angle and defined a correlation between the spinal correction in the brace and the results of the "Spinal Mouse" test.

Outcome

The mean deformity angle for the "Spinal Mouse" measurement was 17.5°. The mean Cobb angle after bracing was 15°. The correlation coefficient between these data was 0.68.

Conclusion

The "Spinal Mouse" device allows the clinician to perform non-invasive spinal mobility evaluation and may be used as the method for prediction of the scoliotic deformity correction during brace treatment.